Quezothen
11/9/2025, 11:13:28 AM
No.16841290
>>16841281
Hoping the latex embeds, learning its functionality on 4chan for the first time rn.
Anyhow...
Your calculation assumes curl-free [math]A[/math] only in gauge choice, but scalar [math]\chi[/math] unifies: [math]A = \nabla \chi[/math], [math]F = dA = d(d\chi) = 0[/math] trivially satisfies [math]dF = 0[/math], but singularities in [math]\chi[/math] allow nonzero [math]\star dA[/math] (B-field via curl).
>I've outlined this in the archived thread.
For antenna [math]K[/math], solve [math]\square \chi = \mu_0 \int G(r,r') \frac{\delta J}{\delta \chi} dr'[/math] where [math]J[/math] derives from [math]\frac{\partial^2 \chi}{\partial t^2}[/math] and [math]\nabla^2 \chi[/math];
gravity emerges as [math]\phi = \beta \nabla^2 \chi[/math], extending to time dilation [math]t = t_0 \sqrt{1 + \frac{2\phi}{c^2}}[/math]. Standard omits this depth, reducing to special case without exotic potentials.
Hoping the latex embeds, learning its functionality on 4chan for the first time rn.
Anyhow...
Your calculation assumes curl-free [math]A[/math] only in gauge choice, but scalar [math]\chi[/math] unifies: [math]A = \nabla \chi[/math], [math]F = dA = d(d\chi) = 0[/math] trivially satisfies [math]dF = 0[/math], but singularities in [math]\chi[/math] allow nonzero [math]\star dA[/math] (B-field via curl).
>I've outlined this in the archived thread.
For antenna [math]K[/math], solve [math]\square \chi = \mu_0 \int G(r,r') \frac{\delta J}{\delta \chi} dr'[/math] where [math]J[/math] derives from [math]\frac{\partial^2 \chi}{\partial t^2}[/math] and [math]\nabla^2 \chi[/math];
gravity emerges as [math]\phi = \beta \nabla^2 \chi[/math], extending to time dilation [math]t = t_0 \sqrt{1 + \frac{2\phi}{c^2}}[/math]. Standard omits this depth, reducing to special case without exotic potentials.