Anonymous
7/17/2025, 11:15:37 PM
No.16727090
>>16727108
>>16727111
>>16727113
>>16727128
>>16727353
>>16727794
>>16727805
>>16728242
>>16728291
>>16728301
>>16731128
>>16731491
>>16731539
>>16731590
>>16733020
>>16733594
>>16733970
>>16734070
>>16734599
>>16734610
>>16734813
>>16736351
>>16741369
>>16743443
>>16743445
>>16744656
>>16744678
>>16744718
>>16744729
>>16746284
Infinitists btfo
Claim: [math] 0.999_{\dots} \neq 1[/math]
Proof: We use induction. The base case is trivial: [math] 0.9 \neq 1[/math]. Next we introduce the notation that [math]0.9_n = \underbrace{0.9999999}_{n-\text{many nines}}[/math] is the decimal with n-many 9s.
Now the inductive step: we assume [math]0.9_n \neq 1[/math]. Then trivially [math]0.9_{n+1} \neq 1 [/math]. It might help to notice that [math] 1 - 0.9_{n+1} \neq 0[/math].
This implies that [math]0.9_n \neq 1 \qquad \forall n\in \mathbb{N}[/math]
Finally, we define [math] 0.999_{\dots} := \lim_{n\to\infty} 0.9_n[/math].
[math]\therefore 0.999_{\dots} \neq 1 \qquad \square [/math]
Proof: We use induction. The base case is trivial: [math] 0.9 \neq 1[/math]. Next we introduce the notation that [math]0.9_n = \underbrace{0.9999999}_{n-\text{many nines}}[/math] is the decimal with n-many 9s.
Now the inductive step: we assume [math]0.9_n \neq 1[/math]. Then trivially [math]0.9_{n+1} \neq 1 [/math]. It might help to notice that [math] 1 - 0.9_{n+1} \neq 0[/math].
This implies that [math]0.9_n \neq 1 \qquad \forall n\in \mathbb{N}[/math]
Finally, we define [math] 0.999_{\dots} := \lim_{n\to\infty} 0.9_n[/math].
[math]\therefore 0.999_{\dots} \neq 1 \qquad \square [/math]