>>16780100
That's not what I'm saying, I'm trying to make a distinction:
[eqn]
(i)\;\;\;\;\;\;\;\;\frac{1}{3} = 0.333... = x\\
(ii)\;\;\;\;\ulcorner\frac{1}{3}\urcorner \not = \ulcorner0.333...\urcorner\\
(iii)\;\lvert\ulcorner\frac{1}{3}\urcorner\rvert = \lvert\ulcorner0.333...\urcorner\rvert = x \\
(1)\; \Gamma_{\mathbb{Q}}\vdash \ulcorner\phi\urcorner{} \iff \exists{}n:\mathbb{Z}\;\exists{}d:\mathbb{Z} \; [d \not = 0 \wedge \ulcorner\frac{n}{d}\urcorner \equiv \ulcorner\phi\urcorner ] \\
(2)\; \Gamma_{\mathbb{Q}}\vdash [\ulcorner\phi\urcorner{} \implies \lvert\ulcorner\phi\urcorner\rvert \in \mathbb{Q}] \\
(3)\; \Gamma_{\mathbb{Q}}\nvdash [\lvert\ulcorner\phi\urcorner\rvert \in \mathbb{Q} \implies \ulcorner\phi\urcorner{}] \\
(4)\; \Gamma_{\mathbb{Q}}\vdash [[\ulcorner\phi\urcorner\ \wedge \lvert\ulcorner\phi\urcorner\rvert = \lvert\ulcorner\alpha\urcorner\rvert] \implies \lvert\ulcorner\alpha\urcorner\rvert \in \mathbb{Q} ] \\
(5)\; \Gamma_{\mathbb{Q}}\vdash \ulcorner\frac{1}{3}\urcorner \\
(6)\; \Gamma_{\mathbb{Q}}\nvdash \ulcorner0.333...\urcorner \\
\therefore \\
(7)\; \Gamma_{\mathbb{Q}}\vdash \ulcorner\frac{1}{3}\urcorner{} \implies \lvert\ulcorner\frac{1}{3}\urcorner\rvert \in \mathbb{Q} \\
(8)\; \Gamma_{\mathbb{Q}}\vdash \ulcorner\frac{1}{3}\urcorner{} \implies \lvert\ulcorner0.333...\urcorner\rvert \in \mathbb{Q} \\
(9)\; \Gamma_{\mathbb{Q}}\nvdash \ulcorner{}0.333...\urcorner{} \implies \lvert\ulcorner{}0.333...\urcorner{}\rvert \in \mathbb{Q} \\
(10)\; \Gamma_{\mathbb{Q}}\nvdash \ulcorner{}0.333...\urcorner{} \implies \lvert\ulcorner\frac{1}{3}\urcorner\rvert \in \mathbb{Q} \\
[/eqn]
I hope you don't mind that I made my argument painfully explicit. There is a difference between the formula/syntax/representation and the thing denoted, which you also implicitly agree with since you're trying to make your point by varying bases.